www.osram-os.com

OSRAM OS Infrared in AR/VR

September 2019 | Sunnyvale | Ann Russell

OSRAM – Technology Leader in optical AR / VR / MR applications

3D sensing

- o Multimode laser for TOF illumination
- Single mode laser for structured light and gesture sensing
- $\circ \quad \text{VCSEL for TOF illumination} \\$
- IR illumination for stereoscopic camera based 3D sensing

Display technologies

- $\circ \quad \text{High power projection LED} \\$
- \circ $\,$ Green / blue LASER TO can package $\,$
- o RGB LASER SMT package
- o Photodiodes for power monitoring

Eye tracking

- o Miniature IR LEDs for camera based eye tracking
- o Optical sensors for laser scan based eye tracking

Position Tracking

- o Single mode laser scanning systems
- o Optical sensors for laser scanning tracking
- o IR LED for camera based position tracking
- o IR LED illumination (passive controller tracking)

OSRAM products enable key functionalities in AR/VR

OSRAM products enable key functionalities in AR/VR

Different sensing principles available to assess the environment

Comparison* —	Stereo Vision $ \begin{array}{c} \hline $	Structured light	Time of Flight (TOF)
Size	- (increases with range)	- (increases with range)	++
Cost	++	-	+
Software complexity	-	+	++
Sunlight robustness	++	-	+
Depth accuracy	-	++	+
Power consumption	++	Increase with range	Increase with range
Range		Scalable	Scalable
Low-Light Performance	-	++	++

*) based on TI SLOA190B and OSRAM assessment **) camera based, optional with IR illumination possible

VCSELs possess advantages over both conventional LEDs and edge-emitting lasers

	Well known and cost optimized	VCSEL Scalable, flexible and compact	EEL (FP) Powerful and well known	
Optical Power	Up to 4.5 W	0.1 W up to 10 W	Up to 600 W (4 channel)	
Beam quality	Poor (Lambertian)	Best round low divergence	Medium Asymmetric	
Wavelength	810 nm, 850 nm, 940nm	850 nm, 940 nm	850 nm, 905 nm, 940 nm (in future)	
Temperature stability	0.25 nm/K	0.07 nm/K	0.25 nm/K	
Spectral width	20-30 nm	3 nm	1-2 nm	
Speckle	Low	Low in an array	High	
Switching time	Low speed	High speed	High speed	
Packaging	Simple	Medium	Complex	
Cost	Best	Good	Medium	

Outstanding chip portfolio in 940 nm

Different options for your design providing you maximum flexibility

Fact sheet for multi-mode VCSEL power arrays

	0.3 W	^{0.5} W	1.0 W	^{2.0} W	^{3.0} W	4.0 W
	940 nm	940 nm				
Apertures	100	150	225	281	538	770
Current	450 mA	700 mA	1500 mA	2600 mA	3500 mA	5300 mA
I _{th}	110 mA	125 mA	200 mA	250 mA	400 mA	650 mA
Efficiency	40 %	40 %	40 %	38 %	45%	38 %
Chip size	0.52 x 0.52 x 0.1 mm	0.62 x 0.62 x 0.15 mm	0.72 x 0.72 x 0.1 mm	0.87 x 0.87 x 0.15 mm	1.00 x 0.90 x 0.1 mm	1.26 x 1.26 x 0.1 mm
Status	available	available	available	available	samples available MP CQ2 2019	available
VX PN	K0-0940M-0000- 00009	K0-0940M-0000- 00012	K0-0940M-0000- 00010	K0-0940M-0000- 00011	on request	K0-0940M-0000- 00018

*) Recommended operating condition 100us pulse width, 1% duty cycle, T = 25°C, pulse train of 5 All values are typical values

IR High Power Illumination for stereoscopic camera

SFH 47xx	SFH 47xxS	SFH 47xx	
OSLON Black 90°	IR SYNIOS P2720	OSLON Black 150°	
 OSRAM IR double stack ThinFilm chip technology 90°emission pattern 	 OSRAM IR double stack ThinFilm chip technology 120°lambertian emitter 	 OSRAM IR double stack ThinFilm chip technology High power output at superior homogeneity accross typical FOV 	
 850nm / 940nm 5 different power levels available – 0.5W – 2W optical output 	 850nm / 940nm Up to 3A peak pulse current Small footprint 2.0 x 2.7mm² (<40% compared to OSLON) 	 850nm / 940nm 4 different power levels available – 0.5W – 2W optical output 	

OSRAM products enable key functionalities in AR/VR

Scanning Beam Technology

Scanning beam projectors (laser diodes with MEMS mirror) enables small form factors, high contrast and brilliant color.

-Technology

High speed modulated lasers with MEMS scanner:

- Image is built sequentially pixel by pixel
- Colors are generated by mixing of intensity modulated RGB-beams
- Lasers are intensity modulated at pixel frequency to achieve "grey level"

Benefits:

- ✓ High contrast
- ✓ Brilliant colors (200% NTSC)
- ✓ High efficiency, low power consumption
- ✓ Extremely small form factor (h < 6mm)</p>
- ✓ Image always remains in focus

OSRAM illumination alternatives

- <u>Conventional LEDs:</u>
 - Image generated by LCOS
 - · Large size result in low coupling efficiency
 - Low technological barrier therefore substantial competition
- Pico LEDs:
 - Image generated by LCOS
 - Small size therefore 4X more efficient
 - Early development gave head start over competition
 - · Medium technical barrier therefore competition expected
 - Applicable to existing products
- <u>Lasers:</u>
 - Image generated by MEMs or LCOS
 - Very high coupling efficiency will extract best performance of waveguides
 - Substantial technological head-start over competition
 - Value proposition to AR strongly dependent on efficiency of packaging

Blue & Green Single Mode Laser Diodes for Pico Projection/ HuD/ AR

Scanning beam projectors (laser diodes with MEMS mirror) enables small form factors, high contrast and brilliant color.

→ OS offers blue and green laser diodes with unique performance

AR building blocks: Lasers-waveguide synergy

Illumination as enabling technology

- 1. Coupling into waveguide dictates the optical requirements of the optical engine
- 2. Scanning mirrors are enable fulfilling these requirements (100 mm degrees ex.)
- 3. OSRAM light source can elevate this technology thereby utilizing waveguide potential:
 - I. Large image field
 - II. High brightness

Laser Packaging configurations: small size with high beam quality

- Close-placement: small but diverging
- Separated-placement: large and diverging
- Separated-placement and micro-lens: large and narrow
- Separated-placement, micro-lens and combiner: narrow and small

Optimize COSA riser for best footprint

Bonding

Beam location

OS has strong USP for pico/mobile projection and augmented/mixed reality

Optical sensor technology concept

Application

- LASER beam power monitoring
- Eye safety feedback monitoring

Technology concept

Features

- Integrated photodiode and signal conditioning in one package
- Three / Four pins: GND, VDD, OUTL (low gain output) and optionally OUTH (high gain output)
- Analog output
- Large bandwidth (100 Hz to 70 MHz)
- Sensitivity enhanced at 940nm

OSRAM products enable key functionalities in AR/VR

Gaze Tracking for e.g. Foveated Rendering Camera based

Foveated rendering is one of the most important use cases for Eye Tracking technology in VR.

Foveated rendering works by only rendering the specific part of the screen where the user is currently looking. This will lower GPU load and power consumption significantly, allowing manufacturers to increase screen resolutions and refresh rates.

IR Miniature Packages for Gaze Tracking

Integrated Light Sensor – SFH575X Proposed features and specs (In Definition)

Features:

- The fast monolithic sensor converts modulated IR light pulses
- Analog Output or Digital Output
- Low power consumption < 1.5mA @ 3V
- High bandwidth TIA up to ~ 50MHz
- Small size and height
- Device configurable mode
- Simple 4 pins: Vdd, Gnd, Standby, Output

Applications:

- Positional and eyes tracking
- Gesture recognition
- Laser monitoring for display
- Free-space optical communication receiver

PD

Thanks.

